کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948340 | 1439611 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online sparse class imbalance learning on big data
ترجمه فارسی عنوان
یادگیری عدم تعادل کلاس های آنلاین در داده های بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یادگیری کلاس عدم تعادل، یادگیری آنلاین، الگوریتم پروکسیما، اطلاعات بزرگ،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Class imbalance learning is the study of problems in which some classes appear more frequently than the others. Most existing works that study this problem assume data set to be dense and do not exploit the rich structure of the data. One such structure is the sparsity. In the present work, we focus on solving the class imbalance problem under the sparsity assumption. More specifically, a well-known Gmean metric for class imbalance learning problem in binary classification setting has been maximized, which results in a non-convex loss function. Convex relaxation techniques are used to convert the non-convex problem to the convex problem. The problem formulation in the present work uses L1 regularized proximal learning framework and is solved via accelerated-stochastic-proximal gradient descent algorithm. Our aim in the paper is to show: (i) the application of proximal algorithms to solve real world problems (class imbalance); (ii) how it scales to Big data; and (iii) how it outperforms some recently proposed algorithms in terms of Gmean, F-measure and Mistake rate on several benchmark data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 250-260
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 250-260
نویسندگان
Chandresh Kumar Maurya, Durga Toshniwal, Gopalan Vijendran Venkoparao,