کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948368 1439611 2016 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum likelihood FIR filter for visual object tracking
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Maximum likelihood FIR filter for visual object tracking
چکیده انگلیسی
Visual object trackers usually adopt filters, such as the Kalman filter (KF) and the particle filter (PF), in order to improve tracking accuracy by suppressing measurement noises. However, if the filters have infinite impulse response (IIR) structures, the visual trackers adopting them can exhibit degraded tracking performance when system models have parameter uncertainties or when the noise information is incorrect. To overcome this problem, in this paper, we propose a new finite impulse response (FIR) filter for visual object tracking (VOT). The proposed filter is derived by maximizing the likelihood function, and it is referred to as the maximum likelihood FIR filter (MLFIRF). We conducted extensive experiments to show that the MLFIRF provides superior and more reliable tracking results compared with the KF, PF, and H∞ filter (HF) in VOT.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 543-553
نویسندگان
, , , , ,