کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948414 | 1439613 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Granular transfer learning using type-2 fuzzy HMM for text sequence recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Context information plays an important role in text sequence recognition, but it is difficult to harness the uncertainty caused by conflicting implications. In this paper, we propose a novel Granular Transfer (GT) learning with type-2 fuzzy Hidden Markov Model (HMM) called GT2HMM, in which interpretable granules' representation is introduced to describe the contextual uncertainty for its transfer learning. The correspondences among words are transformed into information granules using fuzzy c-means. To fulfill the utilization of granular information in sequence recognition, we construct a type-2 fuzzy HMM which fuses labeled data and unlabeled observations. With a tunable granularity, correspondence information is refined in a coarse-to-fine manner in GT2HMM. Experiments on transductive and inductive transfer learning in part-of-speech (POS) tagging tasks verify the effectiveness of our proposed GT2HMM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 126-133
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 126-133
نویسندگان
Shichang Sun, Jian Yun, Hongfei Lin, Nanxun Zhang, Ajith Abraham, Hongbo Liu,