کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948433 | 1439613 | 2016 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mixed bi-subject kinship verification via multi-view multi-task learning
ترجمه فارسی عنوان
تأیید اعتبار خویشاوندی دو طرفه از طریق یادگیری چند کاره چندرسانه ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تأیید صمیمیت چندگانه، یادگیری چند کاره آموزش چندرسانه ای،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Particularly our contributions are three folds: first, we introduce a new type of learning problem, called mixed bi-subject kinship verification, to the topic of bi-subject kinship verification: instead of simply verifying whether some fixed kinship relationship (e.g., mother-son) can be established for a given pair of parent-child images, we try to figure out whether any type of the four kinship relations can be established according to the visual features of the image pair, with no need to know the genders of the subjects to be verified beforehand. Second, we propose a novel multi-task learning method to address this problem with two transformation matrices - one is shared amongst all the tasks and the other is unique to each task. Both matrices are simultaneously learned in a joint framework, which enables our algorithm to utilize the common knowledge of the four tasks. Third, we propose a multi-view multi-task learning(MMTL) method to perform multiple feature fusion to improve the mixed bi-subject kinship verification performance. Extensive experiments on the large scale KinFaceW kinship database demonstrate the feasibility and effectiveness of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 350-357
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 350-357
نویسندگان
Xiaoqian Qin, Xiaoyang Tan, Songcan Chen,