کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948445 1439613 2016 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel dictionary learning approach for multi-modality medical image fusion
ترجمه فارسی عنوان
یک رویکرد یادگیری فرهنگ لغت جدید برای تلفیق تصویر پزشکی چند منظوره
کلمات کلیدی
یادگیری فرهنگ لغت چندجمله ای پزشکی تلفیقی تصویر، نمونه گیری آموزنده، خوشه چگالی محلی خوشه بندی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Multi-modality medical image fusion technology can integrate the complementary information of different modality medical images, obtain more precise, reliable and better description of lesions. Dictionary learning based image fusion draws a great attention in researchers and scientists, for its high performance. The standard learning scheme uses entire image for dictionary learning. However, in medical images, the informative region takes a small proportion of the whole image. Most of the image patches have limited and redundant information. Taking all the image patches for dictionary learning brings lots of unvalued and redundant information, which can influence the medical image fusion quality. In this paper, a novel dictionary learning approach is proposed for image fusion. The proposed approach consists of three steps. Firstly, a novel image patches sampling scheme is proposed to obtain the informative patches. Secondly, a local density peaks based clustering algorithm is conducted to classify the image patches with similar image structure information into several patch groups. Each patch group is trained to a compact sub-dictionary by K-SVD. Finally the sub-dictionaries are combined to a complete, informative and compact dictionary. In this dictionary,only important and useful information which can effectively describe the medical image are selected. To show the efficiency of the proposed dictionary learning approach, the sparse coefficient vectors are estimated by a simultaneous orthogonal matching pursuit (SOMP) algorithm with the trained dictionary, and fused by max-L1 rules. The comparative experimental results and analyses reveal that the proposed method achieves better image fusion quality than existing state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 471-482
نویسندگان
, , , , ,