کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948473 | 1439613 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterative GDHP-based approximate optimal tracking control for a class of discrete-time nonlinear systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, an iterative globalized dual heuristic programming (GDHP) method is developed to deal with the approximate optimal tracking control for a class of discrete-time nonlinear systems. The optimal tracking control problem is formulated by solving the discrete-time Hamilton-Jacobi-Bellman (DTHJB) equation. Then, it is approximately solved by the developed iterative GDHP-based algorithm with convergence analysis. The iterative GDHP algorithm is implemented by constructing three neural networks to approximate the error system dynamics, the cost function with its derivative, and the control policy in each iteration, respectively. The information of the cost function and its derivative is provided during iteration calculation. Two simulation examples are investigated to verify the performance of the proposed approximate optimal tracking control approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 775-784
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 775-784
نویسندگان
Chaoxu Mu, Changyin Sun, Aiguo Song, Hualong Yu,