کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948483 | 1439613 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new hybrid filter-wrapper feature selection method for clustering based on ranking
ترجمه فارسی عنوان
یک روش انتخاب جدید فیلتر ترکیبی برای خوشه بندی بر اساس رتبه بندی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Feature selection is a common task in areas such as Pattern Recognition, Data Mining, and Machine Learning since it can help to improve prediction quality, reduce computation time and build more understandable models. Although feature selection for supervised classification has been widely studied, feature selection in the absence of class labels, namely feature selection for clustering or unsupervised feature selection, has been less addressed. Most existing unsupervised feature selection approaches suffer from the called “Bias of Criterion Values to Dimension,” which arises when feature subsets with different cardinality are evaluated by an internal evaluation clustering criterion. In this paper, we introduce a new hybrid filter-wrapper method for clustering, which combines the spectral feature selection framework using the Laplacian Score ranking and a modified Calinski-Harabasz index. The proposed method in the filter stage sorts the features according to their relevance, while in the wrapper stage, through our modified Calinski-Harabasz index that takes into account the cardinality of the feature subsets under evaluation, evaluates the features considering them as a subset rather than individually by using two well-known selection strategies. Experiments on different datasets show that the proposed method alleviates the “Bias of Criterion Values to Dimension” and, identifies and selects more relevant features than those selected by other reported hybrid filter-wrapper feature selection methods for clustering. Additionally, we also contrast our results against other filter and wrapper methods of the state-of-the-art.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 866-880
Journal: Neurocomputing - Volume 214, 19 November 2016, Pages 866-880
نویسندگان
Saúl Solorio-Fernández, J. Ariel Carrasco-Ochoa, José Fco. MartÃnez-Trinidad,