کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948541 | 1439617 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effective successive POI recommendation inferred with individual behavior and group preference
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The prevalence of smartphones and mobile social networks allow the users to share their location-based life experience much easier. The large amount of data generated in related location-based social networks provides informative cues on user's behaviors and preferences to support personalized location-based services, like point-of-interest (POI) recommendation. Yet achieving accurate personalized POI recommendation is challenging as the data available for each user is highly sparse. In addition, the computational complexity is high due to the large number of users. In this paper, a novel methodology for personalized successive POI recommendation is proposed. First, the preferred successive category of location is predicted using a third-rank tensor computed based on the partially observed transitions between the categories of user's successive locations where the missing transitions are uncovered by inferring the group preference. The group is achieved according to users' demographics and frequently visited locations. Then, a bipartite graph is constructed based on the recommended categories for each user. To obtain the personalized ranking of locations, a distance weighted HITS algorithm is proposed so that the location authority score is updated iteratively according to the visiting frequency of the group and some distance constraints. The proposed two-step approach with the category prediction incorporated aims to boost the location prediction performance via the smoothing and at the same time reduce the complexity. Experimental results obtained based on the real-world location-based social network data show that the proposed approach outperforms the existing state-of-the-art methods by a large margin.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 210, 19 October 2016, Pages 174-184
Journal: Neurocomputing - Volume 210, 19 October 2016, Pages 174-184
نویسندگان
Jialiang Chen, Xin Li, William K. Cheung, Kan Li,