کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948575 1439616 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A sparse method for least squares twin support vector regression
ترجمه فارسی عنوان
یک روش اسپرد برای ریاضی بردار برای دوچرخهای کوچکترین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Recently, some nonparallel plane regressors, such as twin support vector regression (TSVR), and least squares TSVR (LSTSVR), have been proposed and have attracted much attention. However, these algorithms are not sparse, which would make their learning speed low. In this paper, we propose a novel nonparallel plane regressor, which can automatically select the relevant features. Firstly, we introduce a regularization term to the objective function of LSTSVR, which can guarantee two quadratic programming problems (QPPs) are strong convex, implying that the proposed algorithm can obtain the global but unique solution. Secondly, the primal formulation is converted to a linear programming (LP) problem. Then, we solve the dual of the LP formulation by minimizing its exterior penalty problem, which would make our method yield very sparse solutions. In other words, this method can suppress input features so that it can obtain comparable regression performance when using fewer computational time. Numerical experiments on artificial dataset and benchmark datasets demonstrate the feasibility and validity of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 211, 26 October 2016, Pages 150-158
نویسندگان
, , ,