کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948578 | 1439616 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A vehicle classification system based on hierarchical multi-SVMs in crowded traffic scenes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Automatic vehicle classification is very important for video surveillance, especially for intelligent transportation system. Currently, some approaches have been proposed. However, almost all of these methods cannot play well in the practical crowded traffic scenes with heavy occlusions, shadows, and different views, etc. To solve this difficult problem, we propose a new vehicle classification method based on hierarchical multi-SVMs. First, we extract the foreground objects from the surveillance videos. Then, we use the proposed hierarchical multi-SVMs method for vehicle classification. Moreover, we present a voting based correction scheme by tracking the classified vehicles for the final precision. Based on the proposed approach, we have built a practical system for robust vehicle classification in complicated traffic scenes. Extensive experimental results show that our solution can achieve convincing results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 211, 26 October 2016, Pages 182-190
Journal: Neurocomputing - Volume 211, 26 October 2016, Pages 182-190
نویسندگان
Huiyuan Fu, Huadong Ma, Yinxin Liu, Dawei Lu,