کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4949681 1440198 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Color-blind index in graphs of very low degree
ترجمه فارسی عنوان
شاخص رنگی کور در نمودارهای بسیار کم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Let c:E(G)→[k] be an edge-coloring of a graph G, not necessarily proper. For each vertex v, let c̄(v)=(a1,…,ak), where ai is the number of edges incident to v with color i. Reorder c̄(v) for every v in G in nonincreasing order to obtain c∗(v), the color-blind partition of v. When c∗ induces a proper vertex coloring, that is, c∗(u)≠c∗(v) for every edge uv in G, we say that c is color-blind distinguishing. The minimum k for which there exists a color-blind distinguishing edge coloring c:E(G)→[k] is the color-blind index of G, denoted dal(G). We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if dal(G)≤2 is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when dal(G) is finite for a class of 3-regular graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 225, 10 July 2017, Pages 122-129
نویسندگان
, , , , , , , , ,