کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4950340 | 1440638 | 2017 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Associative retrieval in spatial big data based on spreading activation with semantic ontology
ترجمه فارسی عنوان
بازیابی وابسته در داده های بزرگ فضایی بر اساس فعال سازی گسترش با هستی شناسی معنایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اطلاعات بزرگ، بازیابی وابسته، گسترش فعالیت، مدل هستی شناسی، استنتاج معنایی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
The opportunities associated with big data have helped generate significant interest, and big data analytics has emerged as an important area of study for both practitioners and researchers. For example, traditional cause-effect analysis and conditional retrieval fall short in dealing with data that are so large and complex. Associative retrieval, on the other hand, has been identified as a potential technique for big data. In this paper, we integrate the spreading activation (SA) algorithm and the ontology model in order to promote the associative retrieval of big data. In our approach, constraints based on variant weights of semantic links are considered with the aim of improving the spreading-activation process and ensuring the accuracy of search results. Semantic inference rules are also introduced to the SA algorithm to find latent spreading path and help obtain results which are more relevant. Our theoretical and experimental analysis demonstrate the utility of this approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 76, November 2017, Pages 499-509
Journal: Future Generation Computer Systems - Volume 76, November 2017, Pages 499-509
نویسندگان
Shengtao Sun, Weijing Song, Albert Y. Zomaya, Yang Xiang, Kim-Kwang Raymond Choo, Tejal Shah, Lizhe Wang,