کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4950473 | 1440645 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-Capacity Combinatorial Ordering GA in Application to Cloud resources allocation and efficient virtual machines consolidation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper describes a novel approach making use of genetic algorithms to find optimal solutions for multi-dimensional vector bin packing problems with the goal to improve cloud resource allocation and Virtual Machines (VMs) consolidation. Two algorithms, namely Combinatorial Ordering First-Fit Genetic Algorithm (COFFGA) and Combinatorial Ordering Next Fit Genetic Algorithm (CONFGA) have been developed for that and combined. The proposed hybrid algorithm targets to minimise the total number of running servers and resources wastage per server. The solutions obtained by the new algorithms are compared with latest solutions from literature. The results show that the proposed algorithm COFFGA outperforms other previous multi-dimension vector bin packing heuristics such as Permutation Pack (PP), First Fit (FF) and First Fit Decreasing (FFD) by 4%, 34%, and 39%, respectively. It also achieved better performance than the existing genetic algorithm for multi-capacity resources virtual machine consolidation (RGGA) in terms of performance and robustness. A thorough explanation for the improved performance of the newly proposed algorithm is given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 69, April 2017, Pages 1-10
Journal: Future Generation Computer Systems - Volume 69, April 2017, Pages 1-10
نویسندگان
Huda Hallawi, Jörn Mehnen, Hongmei He,