کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4950748 1440715 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower bounds on the redundancy in computations from random oracles via betting strategies with restricted wagers
ترجمه فارسی عنوان
محدوده های کمتری در بارگیری در محاسبات از واکه های تصادفی از طریق استراتژی های شرط بندی با واگن محدود
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
The Kučera-Gács theorem is a landmark result in algorithmic randomness asserting that every real is computable from a Martin-Löf random real. If the computation of the first n bits of a sequence requires n+h(n) bits of the random oracle, then h is the redundancy of the computation. Kučera implicitly achieved redundancy nlog⁡n while Gács used a more elaborate coding procedure which achieves redundancy nlog⁡n. A similar bound is implicit in the later proof by Merkle and Mihailović. In this paper we obtain optimal strict lower bounds on the redundancy in computations from Martin-Löf random oracles. We show that any nondecreasing computable function g such that ∑n2−g(n)=∞ is not a general upper bound on the redundancy in computations from Martin-Löf random oracles. In fact, there exists a real X such that the redundancy g of any computation of X from a Martin-Löf random oracle satisfies ∑n2−g(n)<∞. Moreover, the class of such reals is comeager and includes a Δ20 real as well as all weakly 2-generic reals. On the other hand, it has been recently shown that any real is computable from a Martin-Löf random oracle with redundancy g, provided that g is a computable nondecreasing function such that ∑n2−g(n)<∞. Hence our lower bound is optimal, and excludes many slow growing functions such as log⁡n from bounding the redundancy in computations from random oracles for a large class of reals. Our results are obtained as an application of a theory of effective betting strategies with restricted wagers which we develop.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 251, December 2016, Pages 287-300
نویسندگان
, , ,