کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4952200 | 1442027 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On partitioning the edges of 1-plane graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A 1-plane graph is a graph embedded in the plane such that each edge is crossed at most once. A 1-plane graph is optimal if it has maximum edge density. A red-blue edge coloring of an optimal 1-plane graph G partitions the edge set of G into blue edges and red edges such that no two blue edges cross each other and no two red edges cross each other. We prove the following: (i) Every optimal 1-plane graph has a red-blue edge coloring such that the blue subgraph is maximal planar while the red subgraph has vertex degree at most four; this bound on the vertex degree is worst-case optimal. (ii) A red-blue edge coloring may not always induce a red forest of bounded vertex degree. Applications of these results to graph augmentation and graph drawing are also discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 662, 1 February 2017, Pages 59-65
Journal: Theoretical Computer Science - Volume 662, 1 February 2017, Pages 59-65
نویسندگان
William J. Lenhart, Giuseppe Liotta, Fabrizio Montecchiani,