کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4952204 1442028 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles
ترجمه فارسی عنوان
مجموع همسایگی مشخص انتخاب کامل بودن گرافهای مسطح را بدون مثلث مجاور
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A total k-coloring of G is a mapping ϕ:V(G)∪E(G)→{1,⋯,k} such that any two adjacent or incident elements in V(G)∪E(G) receive different colors. Let f(v) denote the sum of colors of the edges incident to v and the color of v. A k-neighbor sum distinguishing total coloring of G is a total k-coloring of G such that for each edge uv∈E(G), f(u)≠f(v). By χ∑″(G), we denote the smallest value k in such a coloring of G. Pilśniak and Woźniak first introduced this coloring and conjectured that χ∑″(G)≤Δ(G)+3 for any simple graph G. Let Lz (z∈V∪E) be a set of lists of integer numbers, each of size k. The smallest k for which for any specified collection of such lists, there exists a neighbor sum distinguishing total coloring using colors from Lz for each z∈V∪E is called the neighbor sum distinguishing total choosability of G, and denoted by ch∑″(G). In this paper, we prove that ch∑″(G)≤Δ(G)+3 for planar graphs without adjacent triangles with Δ(G)≥8, which implies that the conjecture proposed by Pilśniak and Woźniak is true for these planar graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 661, 24 January 2017, Pages 1-7
نویسندگان
, , ,