کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4952204 | 1442028 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles
ترجمه فارسی عنوان
مجموع همسایگی مشخص انتخاب کامل بودن گرافهای مسطح را بدون مثلث مجاور
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A total k-coloring of G is a mapping Ï:V(G)âªE(G)â{1,â¯,k} such that any two adjacent or incident elements in V(G)âªE(G) receive different colors. Let f(v) denote the sum of colors of the edges incident to v and the color of v. A k-neighbor sum distinguishing total coloring of G is a total k-coloring of G such that for each edge uvâE(G), f(u)â f(v). By Ïââ³(G), we denote the smallest value k in such a coloring of G. PilÅniak and Woźniak first introduced this coloring and conjectured that Ïââ³(G)â¤Î(G)+3 for any simple graph G. Let Lz (zâVâªE) be a set of lists of integer numbers, each of size k. The smallest k for which for any specified collection of such lists, there exists a neighbor sum distinguishing total coloring using colors from Lz for each zâVâªE is called the neighbor sum distinguishing total choosability of G, and denoted by chââ³(G). In this paper, we prove that chââ³(G)â¤Î(G)+3 for planar graphs without adjacent triangles with Î(G)â¥8, which implies that the conjecture proposed by PilÅniak and Woźniak is true for these planar graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 661, 24 January 2017, Pages 1-7
Journal: Theoretical Computer Science - Volume 661, 24 January 2017, Pages 1-7
نویسندگان
Jihui Wang, Jiansheng Cai, Baojian Qiu,