کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4952489 | 1442041 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using evaluation functions in Monte-Carlo Tree Search
ترجمه فارسی عنوان
استفاده از توابع ارزیابی در جستجوی درخت مونت کارلو
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
For decades the game playing algorithms of choice have been based on the mini-max algorithm and have had considerable success in many games, e.g., chess and checkers. Recently a new algorithmic paradigm called Monte-Carlo Tree Search (MCTS) has been discovered and has proven to perform well in games where mini-max has failed, most notably in the game of Go. Many view mini-max and MCTS based searches as competing and incompatible approaches. However, a hybrid technique using features of both mini-max and MCTS is possible. We call this algorithm MCTS-EPT (MCTS with early playout termination) and study it from the context of three different games: Amazons, Breakthrough, and Havannah. This paper expands and elaborates on work presented in [1] and [2].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 644, 6 September 2016, Pages 106-113
Journal: Theoretical Computer Science - Volume 644, 6 September 2016, Pages 106-113
نویسندگان
Richard Lorentz,