کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4954148 | 1443128 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For multi-objective design of multi-parameter antenna structures, optimization efficiency and computational cost are two major concerns. In this paper, an improved multi-objective evolutionary algorithm based on decomposition (MOEA/D) is proposed to improve global optimization capability by diversity detection operation and mixed population update operation. Further, in order to reduce the computational cost, a hybrid optimization strategy integrating a dynamically updatable surrogate-assisted model into the improved MOEA/D is proposed. The numerical results of test functions show that our algorithm outperforms original MOEA/D, modified MOEA/D (M-MOEA/D), and nondominated sorting genetic algorithm II (NGSA-II) in terms of diversity. Experimental validation of Pareto-optimal planar miniaturized multiband antenna designs is also provided, showing excellent convergence and considerable computational savings compared to those previously published approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 72, February 2017, Pages 192-199
Journal: AEU - International Journal of Electronics and Communications - Volume 72, February 2017, Pages 192-199
نویسندگان
Jian Dong, Qianqian Li, Lianwen Deng,