کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4955446 | 1444215 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Towards the adaptation of SDC methods to stream mining
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Most of the existing statistical disclosure control (SDC) standards, such as k-anonymity or l-diversity, were initially designed for static data. Therefore, they cannot be directly applied to stream data which is continuous, transient, and usually unbounded. Moreover, in streaming applications, there is a need to offer strong guarantees on the maximum allowed delay between incoming data and its corresponding anonymous output. In order to full-fill with these requirements, in this paper, we present a set of modifications to the most standard SDC methods, efficiently implemented within the Massive Online Analysis (MOA) stream mining framework. Besides, we have also developed a set of performance metrics to evaluate Information Loss and Disclosure Risk values continuously. Finally, we also show the efficiency of our new methods with a large set of experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Security - Volume 70, September 2017, Pages 702-722
Journal: Computers & Security - Volume 70, September 2017, Pages 702-722
نویسندگان
David MartÃnez RodrÃguez, Jordi Nin, Miguel Nuñez-del-Prado,