کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4956651 | 1444589 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An FPGA-based architecture for embedded systems performance acceleration applied to Optimum-Path Forest classifier
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Classification techniques development constitutes a foundation for machine learning evolution, which has become a major part of the current mainstream of Artificial Intelligence research lines. However, the computational cost associated with these techniques limits their use in resource constrained embedded platforms. As the classification task is often combined with other high computational cost functions, efficient performance of the main modules is fundamental requirements to achieve hard real-time speed for the whole system. Graph-based machine learning techniques offer a powerful framework for building classifiers. Optimum-Path Forest (OPF) is a graph-based classifier presenting the interesting ability to provide nonlinear classes separation surfaces. This work proposes a SoC/FPGA based design and implementation of an architecture for embedded applications, presenting a hardware converted algorithm for an OPF classifier. Comparison of the achieved results with an embedded processor software implementation shows accelerations of the OPF classification from 2.18 to 9 times, which permits to expect real-time performance to embedded applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microprocessors and Microsystems - Volume 52, July 2017, Pages 261-271
Journal: Microprocessors and Microsystems - Volume 52, July 2017, Pages 261-271
نویسندگان
Wendell F.S. Diniz, Vincent Fremont, Isabelle Fantoni, EurÃpedes G.O. Nóbrega,