کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4956803 | 1364710 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On-the-fly adaptivity for process networks over shared-memory platforms
ترجمه فارسی عنوان
تطبیقی بر روی پرواز برای شبکه های فرایند بر روی سیستم عامل های حافظه مشترک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Modern MPSoC architectures incorporate tens of processing elements on a single die. This trend poses the need of expressing the parallelism of the applications in order to effectively exploit the available resources. Several models of computation have been proposed, that specify an application as a network of independent computational elements. Such models represent a suitable solution for systematic mapping of parallel applications onto multiprocessor architectures. However, the workload of a given application can abruptly vary, as well as the amount of computing resources available, depending on the overall workload of the system and on the input data dependency. Traditional worst-case designs may overestimate workloads, leading to resource wasting and unnecessary power consumption. To overcome such limitation, in this work we devise a fast, run-time and automatic approach able to quickly re-configure the core-to-task mapping and the degree of parallelism of the application when the available resources or the application workload change, targeting shared-memory platforms. Experiments, carried out using an FPGA implementation, demonstrate the effectiveness of the proposed approach, in terms of achievable speed-up, power saving and introduced overhead.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microprocessors and Microsystems - Volume 46, Part B, October 2016, Pages 240-254
Journal: Microprocessors and Microsystems - Volume 46, Part B, October 2016, Pages 240-254
نویسندگان
Giuseppe Tuveri, Paolo Meloni, Francesca Palumbo, Giovanni Pietro Seu, Igor Loi, Francesco Conti, Luigi Raffo,