کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4957527 1364762 2017 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Active learning enabled activity recognition
ترجمه فارسی عنوان
فعال یادگیری فعالیت فعال
کلمات کلیدی
یادگیری فعال، به رسمیت شناختن فعالیت سیستم خانه هوشمند،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Activity recognition in smart environment has been investigated rigorously in recent years. Researchers are enhancing the underlying activity discovery and recognition process by adding various dimensions and functionalities. But one significant barrier still persists which is collecting the ground truth information. Ground truth is very important to initialize a supervised learning of activities. Due to a large variety in number of Activities of Daily Living (ADLs), acknowledging them in a supervised way is a non-trivial research problem. Most of the previous researches have referenced a subset of ADLs and to initialize their model, they acquire a vast amount of informative labeled training data. On the other hand to collect ground truth and differentiate ADLs, human intervention is indispensable. As a result it takes an immense effort and raises privacy concerns to collect a reasonable amount of labeled data. In this paper, we propose to use active learning to alleviate the labeling effort and ground truth data collection in activity recognition pipeline. We investigate and analyze different active learning strategies to scale activity recognition and propose a dynamic k-means clustering based active learning approach. Experimental results on real data traces from a retirement community-(IRB #HP-00064387) help validate the early promise of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pervasive and Mobile Computing - Volume 38, Part 2, July 2017, Pages 312-330
نویسندگان
, , ,