کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4960325 1446450 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
ترجمه فارسی عنوان
پیش بینی سری زمانی مالی با استفاده از یک شبکه عصبی مکرر پیچیدگی و روش یادگیری تکاملی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

The paper presents a low complexity recurrent Functional Link Artificial Neural Network for predicting the financial time series data like the stock market indices over a time frame varying from 1 day ahead to 1 month ahead. Although different types of basis functions have been used for low complexity neural networks earlier for stock market prediction, a comparative study is needed to choose the optimal combinations of these for a reasonably accurate forecast. Further several evolutionary learning methods like the Particle Swarm Optimization (PSO) and modified version of its new variant (HMRPSO), and the Differential Evolution (DE) are adopted here to find the optimal weights for the recurrent computationally efficient functional link neural network (RCEFLANN) using a combination of linear and hyperbolic tangent basis functions. The performance of the recurrent computationally efficient FLANN model is compared with that of low complexity neural networks using the Trigonometric, Chebyshev, Laguerre, Legendre, and tangent hyperbolic basis functions in predicting stock prices of Bombay Stock Exchange data and Standard & Poor's 500 data sets using different evolutionary methods and has been presented in this paper and the results clearly reveal that the recurrent FLANN model trained with the DE outperforms all other FLANN models similarly trained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of King Saud University - Computer and Information Sciences - Volume 29, Issue 4, October 2017, Pages 536-552
نویسندگان
, , , ,