کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496085 862849 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Type-2 fuzzy logic-based classifier fusion for support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Type-2 fuzzy logic-based classifier fusion for support vector machines
چکیده انگلیسی

As a machine-learning tool, support vector machines (SVMs) have been gaining popularity due to their promising performance. However, the generalization abilities of SVMs often rely on whether the selected kernel functions are suitable for real classification data. To lessen the sensitivity of different kernels in SVMs classification and improve SVMs generalization ability, this paper proposes a fuzzy fusion model to combine multiple SVMs classifiers. To better handle uncertainties existing in real classification data and in the membership functions (MFs) in the traditional type-1 fuzzy logic system (FLS), we apply interval type-2 fuzzy sets to construct a type-2 SVMs fusion FLS. This type-2 fusion architecture takes considerations of the classification results from individual SVMs classifiers and generates the combined classification decision as the output. Besides the distances of data examples to SVMs hyperplanes, the type-2 fuzzy SVMs fusion system also considers the accuracy information of individual SVMs. Our experiments show that the type-2 based SVM fusion classifiers outperform individual SVM classifiers in most cases. The experiments also show that the type-2 fuzzy logic-based SVMs fusion model is better than the type-1 based SVM fusion model in general.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 8, Issue 3, June 2008, Pages 1222–1231
نویسندگان
, , , ,