کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4961605 1446513 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy Criteria in Multi-objective Feature Selection for Unsupervised Learning
ترجمه فارسی عنوان
معیارهای فازی در انتخاب ویژگی های چند هدف برای یادگیری بی نظیر
کلمات کلیدی
انتخاب ویژگی، معیارهای فازی یادگیری بی نظیر، بهینه سازی چند هدفه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Feature selection in which most informative variables are selected for model generation is an important step in pattern recognition. Here, one often tries to optimize multiple criteria such as discriminating power of the descriptor, performance of model and cardinality of a subset. In this paper we propose a fuzzy criterion in multi-objective unsupervised feature selection by applying the hybridized filter-wrapper approach (FC-MOFS). These formulations allow for an efficient way to pick features from a pool and to avoid misunderstanding of overlapping features via crisp clustered learning in a conventional multi-objective optimization procedure. Moreover, the optimization problem is solved by using non-dominated sorting genetic algorithm, type two (NSGA-II). The performance of the proposed approach is then examined on six benchmark datasets from multiple disciplines and different numbers of features. Systematic comparisons of the proposed method and representative non-fuzzified approaches are illustrated in this work. The experimental studies show a superior performance of the proposed approach in terms of accuracy and feasibility.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 102, 2016, Pages 51-58
نویسندگان
, , , , ,