کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4962487 1446615 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural Monitoring with Distributed-Regional and Event-based NN-Decision Tree Learning Using Mobile Multi-Agent Systems and Common Java Script Platforms
ترجمه فارسی عنوان
نظارت ساختاری با توزیع-منطقه ای و مبتنی بر رویداد مبتنی بر تصمیم گیری درخت با استفاده از چند سیستم عامل چند رسانه ای و سیستم عامل مشترک جاوا اسکریپت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Among the Internet-of-Things, one major field of application deploying agent-based sensor and information processing is Structural Load and Structural Health Monitoring (SLM/SHM) of mechanical structures. This work investigates a data processing approach for material-integrated and mobile ubiquitous SHM and SLM systems by using self-organizing mobile multi-agent systems (MAS), executed on a highly portable JavaScript-based Agent Processing Platform (APP), and optimized Machine Learning (ML) methods providing load class recognition from a set of sensors embedded in the technical structure. Machine learning approaches usually require a large amount of computational power and storage resources and ML is commonly performed off-line, not suitable for resource constrained sensor network implementations. Instead, a novel distributed-regional on-line learning is applied, with on-line distributed sensor processing and learning performed by the agent system. The APP provides ML as a service, and the agent itself only collects training and analysis data passed to the APP, finally returning a learned model that is saved by the agent in a compact format (and is available on any other location). A case study shows that the learning algorithm is suitable (stable) for noisy and time varying sensor data. Spatial global learning is reduced and mapped on local region learning with global voting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Technology - Volume 26, 2016, Pages 499-516
نویسندگان
,