کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964688 | 1447888 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means++
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 57, April 2017, Pages 19-28
Journal: Computerized Medical Imaging and Graphics - Volume 57, April 2017, Pages 19-28
نویسندگان
Liansheng Wang, Shusheng Li, Rongzhen Chen, Sze-Yu Liu, Jyh-Cheng Chen,