کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4965078 1447941 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two step transfer entropy - An estimator of delayed directional couplings between multivariate EEG time series
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Two step transfer entropy - An estimator of delayed directional couplings between multivariate EEG time series
چکیده انگلیسی
Quantifying delayed directional couplings between electroencephalographic (EEG) time series requires an efficient method of causal network inference. This is especially due to the limited knowledge about the underlying dynamics of the brain activity. Recent methods based on information theoretic measures such as Transfer Entropy (TE) made significant progress on this issue by providing a model-free framework for causality detection. However, TE estimation from observed data is not a trivial task, especially when the number of variables is large which is the case in a highly complex system like human brain. Here we propose a computationally efficient procedure for TE estimation based on using sets of the Most Informative Variables that effectively contribute to resolving the uncertainty of the destination. In the first step of this method, some conditioning sets are determined through a nonlinear state space reconstruction; then in the second step, optimal estimation of TE is done based on these sets. Validation of the proposed method using synthetic data and neurophysiological signals demonstrates computational efficiency in quantifying delayed directional couplings compared with the common TE analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 79, 1 December 2016, Pages 110-122
نویسندگان
, , ,