کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496641 862866 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding
چکیده انگلیسی

This paper introduces a novel real-time approach to detecting wormhole defects in friction stir welding in a nondestructive manner. The approach is to evaluate feedback forces provided by the welding process using the discrete Fourier transform and a multilayer neural network. It is asserted here that the oscillations of the feedback forces are related to the dynamics of the plasticized material flow, so that the frequency spectra of the feedback forces can be used for detecting wormhole defects. A one-hidden-layer neural network trained with the backpropagation algorithm is used for classifying the frequency patterns of the feedback forces. The neural network is trained and optimized with a data set of forge–load control welds, and the generality is tested with novel data set of position control welds. Overall, about 95% classification accuracy is achieved with no bad welds classified as good. Accordingly, the present paper demonstrates an approach for providing important feedback information about weld quality in real-time to a control system for friction stir welding.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 8, December 2011, Pages 4839–4846
نویسندگان
, , , ,