کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496642 862866 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems
چکیده انگلیسی
This study proposes a Rule-Based Symbiotic MOdified Differential Evolution (RSMODE) for Self-Organizing Neuro-Fuzzy Systems (SONFS). The RSMODE adopts a multi-subpopulation scheme that uses each individual represents a single fuzzy rule and each individual in each subpopulation evolves separately. The proposed RSMODE learning algorithm consists of structure learning and parameter learning for the SONFS model. The structure learning can determine whether or not to generate a new rule-based subpopulation which satisfies the fuzzy partition of input variables using the entropy measure. The parameter learning combines two strategies including a subpopulation symbiotic evolution and a modified differential evolution. The RSMODE can automatically generate initial subpopulation and each individual in each subpopulation evolves separately using a modified differential evolution. Finally, the proposed method is applied in various simulations. Results of this study demonstrate the effectiveness of the proposed RSMODE learning algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 8, December 2011, Pages 4847-4858
نویسندگان
, , , ,