کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967084 1449363 2017 46 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Conservative and bounded volume-of-fluid advection on unstructured grids
ترجمه فارسی عنوان
محافظه کارانه و محدودیت حجمی مایع در شبکه های بدون ساختار
کلمات کلیدی
جریان دو مرحله ای، حجم مایع شبکه غیر ساختاری حفاظت، محدودیت، شار هندسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a hexahedral, wedge and tetrahedral primal mesh, in three-dimensions. Comparisons are made with the adaptation of a conventional unsplit VOF advection scheme to our collocated node-based flow solver. Depending on the choice in the nominal flux polyhedron, the NIFPA scheme presented accuracies ranging from zeroth to second order and calculation times that differed by orders of magnitude. For the nominal flux polyhedra which demonstrate second-order accuracy on all tests and meshes, the NIFPA method's cost was comparable to the traditional topologically complex second-order accurate VOF advection scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 350, 1 December 2017, Pages 387-419
نویسندگان
, ,