کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4967339 | 1449370 | 2017 | 55 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Runge-Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper develops PK-based non-central and central Runge-Kutta discontinuous Galerkin (DG) methods with WENO limiter for the one- and two-dimensional special relativistic magnetohydrodynamical (RMHD) equations, K=1,2,3. The non-central DG methods are locally divergence-free, while the central DG are “exactly” divergence-free but have to find two approximate solutions defined on mutually dual meshes. The adaptive WENO limiter first identifies the “troubled” cells by using a modified TVB minmod function, and then uses the WENO technique and the cell average values of the DG solutions in the neighboring cells as well as the original cell averages of the “troubled” cells to locally reconstruct a new polynomial of degree (2K+1) inside the “troubled” cells instead of the DG solution. The WENO limiting procedure does not destroy the locally or “exactly” divergence-free property of magnetic field and is only employed for finite “troubled” cells so that the computational cost can be as little as possible. Several test problems in one and two dimensions are solved by using our non-central and central Runge-Kutta DG methods with WENO limiter. The numerical results demonstrate that our methods are stable, accurate, and robust in resolving complex wave structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 343, 15 August 2017, Pages 33-72
Journal: Journal of Computational Physics - Volume 343, 15 August 2017, Pages 33-72
نویسندگان
Jian Zhao, Huazhong Tang,