| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4967584 | 1449379 | 2017 | 49 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On consistency and rate of convergence of Flux Reconstruction for time-dependent problems
												
											ترجمه فارسی عنوان
													در هماهنگی و میزان همگرایی بازسازی شار برای مشکلات وابسته به زمان 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												بازسازی شارژ، گارکین متزلزل، ثبات، نرخ همگرایی، پراکندگی، جدایی،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 نرم افزارهای علوم کامپیوتر
												
											چکیده انگلیسی
												This study is directed at a rigorous characterization of the consistency and convergence of discontinuous finite element schemes formulated using Flux Reconstruction (FR). We show that the FR formulation is consistent for linear advection and converges to the exact solution for any scheme that is stable in the von Neumann sense. The numerical solution for a scheme of polynomial order P is composed of P+1 eigenmodes, of which, one and exactly one is 'physical' such that it exhibits the analytical dispersion behavior in the limit of asymptotic grid resolution. The remaining P modes are 'spurious' such that the fraction of energy received by them from the initial condition vanishes in the asymptotic limit. On grid refinement, the rate of convergence of the numerical solution is a function of time, starting from a short-time rate at t=0+, associated with interpolation, and asymptotically approaching a long-time rate as tââ, associated with numerical differentiation. Both these rates can be inferred directly from the eigensystem of the numerical derivative operator. We verify these analytical expectations using simple experiments in 1-D and 2-D.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 334, 1 April 2017, Pages 367-391
											Journal: Journal of Computational Physics - Volume 334, 1 April 2017, Pages 367-391
نویسندگان
												Kartikey Asthana, Jerry Watkins, Antony Jameson, 
											