کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967677 1449381 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
ترجمه فارسی عنوان
یک روش رگرسیون مرحله ای قوی و کارآمد برای ساختن گسترش هرج و مرج چند بعدی
کلمات کلیدی
عدم قطعیت اندازه گیری، هرج و مرج چندجملهای بر اساس رگرسیون، گسترش هرج و مرج پراکنده، رنج کمتر زاویه، رگرسیون گام به گام،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 332, 1 March 2017, Pages 461-474
نویسندگان
, , , , ,