کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4967808 1449377 2017 18 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations
ترجمه فارسی عنوان
یک روش چند منظوره برای سیستم های خطی ناشی از معادلات فیزیکی انتشار فیزیکی دو بعدی وابسته به زمان است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

In this paper, we study a V-cycle multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. The coefficient matrices of the linear systems are structured such that their matrix-vector multiplications can be computed efficiently. The main advantage using the multigrid method is to handle the space-fractional diffusion equations on non-rectangular domains, and to solve the linear systems with non-constant coefficients more effectively. The main idea of the proposed multigrid method is to employ two banded splitting iteration schemes as pre-smoother and post-smoother. The pre-smoother and the post-smoother take banded splitting of the coefficient matrix under the x-dominant ordering and the y-dominant ordering, respectively. We prove the convergence of the proposed two banded splitting iteration schemes in the sense of infinity norm. Results of numerical experiments for time-dependent two-dimensional space-fractional diffusion equations on rectangular, L-shape and U-shape domains are reported to demonstrate that both computational time and iteration number required by the proposed method are significantly smaller than those of the other tested methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 336, 1 May 2017, Pages 69-86
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت