کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4967908 | 1449384 | 2017 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast parareal iterations for fractional diffusion equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Numerical methods for fractional PDEs is a hot topic recently. This work is concerned with the parareal algorithm for system of ODEs uâ²(t)+Au(t)=f that arising from semi-discretizations of time-dependent fractional diffusion equations with nonsymmetric Riemann-Liouville fractional derivatives. The spatial semi-discretization of this kind of fractional derivatives often results in a coefficient matrix A with spectrum Ï(A) satisfyingÏ(A)âS(η):={λâC:â(λ)â¥Î·,â(λ)âR}, where η>0 is a measure of dissipativity of the differential equations. To accelerate the parareal algorithm, we propose a scaled model uâ²(t)+1αAu(t)=f (with α>0) to serve the coarse grid correction, which is an important component of our parareal algorithm. Given η and α, we derive a sharp bound of the convergence factor of the parareal iterations. Moreover, by minimizing such a bound we get optimized scaling factor αopt. It is shown that, compared to α=1 (i.e., the classical implementation pattern of the coarse grid correction), the optimized scaling factor significantly improves the convergence rate. Numerical examples are presented to support the theoretical finding.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 329, 15 January 2017, Pages 210-226
Journal: Journal of Computational Physics - Volume 329, 15 January 2017, Pages 210-226
نویسندگان
Shu-Lin Wu, Tao Zhou,