کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4968550 1449669 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deep learning for short-term traffic flow prediction
ترجمه فارسی عنوان
یادگیری عمیق برای پیش بینی جریان ترافیکی کوتاه مدت
کلمات کلیدی
جریانهای ترافیکی، یادگیری عمیق، فیلتر کردن روند مدل خطی انعطاف پذیر،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We develop a deep learning model to predict traffic flows. The main contribution is development of an architecture that combines a linear model that is fitted using ℓ1 regularization and a sequence of tanh layers. The challenge of predicting traffic flows are the sharp nonlinearities due to transitions between free flow, breakdown, recovery and congestion. We show that deep learning architectures can capture these nonlinear spatio-temporal effects. The first layer identifies spatio-temporal relations among predictors and other layers model nonlinear relations. We illustrate our methodology on road sensor data from Interstate I-55 and predict traffic flows during two special events; a Chicago Bears football game and an extreme snowstorm event. Both cases have sharp traffic flow regime changes, occurring very suddenly, and we show how deep learning provides precise short term traffic flow predictions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 79, June 2017, Pages 1-17
نویسندگان
, ,