کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4968917 | 1449846 | 2017 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Random Multi-Graphs: A semi-supervised learning framework for classification of high dimensional data
ترجمه فارسی عنوان
چندگانه تصادفی: یک چارچوب یادگیری نیمه نظارتی برای طبقه بندی داده های با ابعاد بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Currently, high dimensional data processing confronts two main difficulties: inefficient similarity measure and high computational complexity in both time and memory space. Common methods to deal with these two difficulties are based on dimensionality reduction and feature selection. In this paper, we present a different way to solve high dimensional data problems by combining the ideas of Random Forests and Anchor Graph semi-supervised learning. We randomly select a subset of features and use the Anchor Graph method to construct a graph. This process is repeated many times to obtain multiple graphs, a process which can be implemented in parallel to ensure runtime efficiency. Then the multiple graphs vote to determine the labels for the unlabeled data. We argue that the randomness can be viewed as a kind of regularization. We evaluate the proposed method on eight real-world data sets by comparing it with two traditional graph-based methods and one state-of-the-art semi-supervised learning method based on Anchor Graph to show its effectiveness. We also apply the proposed method to the subject of face recognition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 60, April 2017, Pages 30-37
Journal: Image and Vision Computing - Volume 60, April 2017, Pages 30-37
نویسندگان
Qin Zhang, Jianyuan Sun, Guoqiang Zhong, Junyu Dong,