کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496898 862873 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heuristic wavelet shrinkage for denoising
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Heuristic wavelet shrinkage for denoising
چکیده انگلیسی

Noise reduction without any prior knowledge of noise or signals is addressed in this study. Compared with conventional filters, wavelet shrinkage can respect this requirement to reduce noise from received signal in wavelet coefficients. However, wavelet threshold depends on an estimate of noise deviation and a weight relating signal's length cannot be applied in every case. This paper uses particle swarm optimization (PSO) to explore a suitable threshold in a complete solution space, named PSOShrink. A general-purpose objective function which is derived from blind signal separation (BSS) theory is further proposed. In simulation, four benchmarks signals and three degrading degrees are testing; meanwhile, three existing algorithm with state-of-the-art are performed for comparison. PSOShrink can not only recovers source signals from a heavy blurred signal but also remains details of a source signal from a light blurred signal; moreover, it performs outstanding denoising in every simulation case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 1, January 2011, Pages 256–264
نویسندگان
, , , , ,