کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
496912 | 862873 | 2011 | 11 صفحه PDF | دانلود رایگان |

An important number of publications deal with the computational efficiency of a novel Evolutionary Algorithm called Differential Evolution (DE). However, there is still a noticeable lack of studies on DE's performance on engineering problems, which combine large-size instances, constraint-handling and mixed-integer variables issues. This paper proposes the solution by DE of process engineering problems and compares its computational performance with an exact optimization method (Branch-and-Bound) and with a Genetic Algorithm. Two analytical formulations are used to model the batch plant design problem and a set of examples gathering the three above-mentioned issues are also provided.The computational results obtained highlight the clear superiority of DE since its best found solutions always lie very close to the Branch-and-Bound optima. Moreover, for an equal number of objective function evaluations, the results repeatability was found to be much better for the DE method than for the Genetic Algorithm.
Journal: Applied Soft Computing - Volume 11, Issue 1, January 2011, Pages 399–409