کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969299 1449928 2017 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A generic denoising framework via guided principal component analysis
ترجمه فارسی عنوان
یک چارچوب انحصاری عمومی از طریق تجزیه و تحلیل جزء اصلی هدایت شده است
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Though existing state-of-the-art denoising algorithms, such as BM3D, LPG-PCA and DDF, obtain remarkable results, these methods are not good at preserving details at high noise levels, sometimes even introducing non-existent artifacts. To improve the performance of these denoising methods at high noise levels, a generic denoising framework is proposed in this paper, which is based on guided principle component analysis (GPCA). The propose framework can be split into two stages. First, we use statistic test to generate an initial denoised image through back projection, where the statistical test can detect the significantly relevant information between the denoised image and the corresponding residual image. Second, similar image patches are collected to form different patch groups, and local basis are learned from each patch group by principle component analysis. Experimental results on natural images, contaminated with Gaussian and non-Gaussian noise, verify the effectiveness of the proposed framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 340-352
نویسندگان
, , , , , , , ,