کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969304 | 1449929 | 2017 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discriminant analysis via jointly L2,1-norm sparse tensor preserving embedding for image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
There exits an increasing interest on sparse subspace learning (SSL) for dimensionality reduction and pattern recognition. In this paper, we propose a novel sparse subspace learning method named discriminant sparse tensor neighborhood preserving embedding (DSTNPE) which incorporates discriminant information into tensor sparse neighborhood preserving embedding to perform robust image classification. DSTNPE introduces the L2,1-norm to sparse neighborhoods and criterion, in which the within-neighborhood tensor scatter and between-neighborhood tensor scatter are defined for sparse regression. One virtue of DSTNPE is that it can avoid selecting the scale of local neighborhood of the manifold learning algorithms. Additionally, DSTNPE can iteratively obtain the transformation matrices by the sparse tensor neighborhoods preservation. Furthermore, by means of virtue of maximum margin criterion(MMC), the discriminant performance of DSTNPE is further enhanced. To evaluate the proposed method, extensive experiments conducted on five public databases demonstrate that our proposed algorithm outperforms many state-of-the-art algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 47, August 2017, Pages 10-22
Journal: Journal of Visual Communication and Image Representation - Volume 47, August 2017, Pages 10-22
نویسندگان
Rongbing Huang, Chang Liu, Jiliu Zhou,