کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969597 | 1449975 | 2017 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Long range iris recognition: A survey
ترجمه فارسی عنوان
به رسمیت شناختن عریض طولانی: یک نظرسنجی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بیومتریک، تشخیص بادکنک، شناخت دامنه محدوده وسیع، تشخیص بادکنک در فاصله، استقرار تشخیص عنبیه، تشخیص بیضه غیر ایده آل،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The term “iris” refers to the highly textured annular portion of the human eye that is externally visible. An iris recognition system exploits the richness of these textural patterns to distinguish individuals. Iris recognition systems are being used in a number of human recognition applications such as access control, national ID schemes, border control, etc. To capture the rich textural information of the iris pattern regardless of the eye color, traditional iris recognition systems utilize near-infrared (NIR) sensors to acquire images of the iris. This, however, restricts the iris image acquisition distance to close quarters (less than 1â¯m). Over the last several years, there have been numerous attempts to design and implement iris recognition systems that operate at longer standoff distances ranging from 1â¯m to 60â¯m. Such long range iris acquisition and recognition systems can provide high user convenience and improved throughput. This paper reviews the state-of-the-art design and implementation of iris-recognition-at-a-distance (IAAD) systems. In this regard, the design of such a system from both the image acquisition (hardware) and image processing (algorithms) perspectives are presented. The major contributions of this paper include: (1) discussing the significance and applications of IAAD systems in the context of human recognition, (2) providing a review of existing IAAD systems, (3) presenting a complete solution to the design problem of an IAAD system, from both hardware and algorithmic perspectives, (4) discussing the use of additional ocular information, along with iris, for improving IAAD accuracy, and (5) discussing the current research challenges and providing recommendations for future research in IAAD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 72, December 2017, Pages 123-143
Journal: Pattern Recognition - Volume 72, December 2017, Pages 123-143
نویسندگان
Kien Nguyen, Clinton Fookes, Raghavender Jillela, Sridha Sridharan, Arun Ross,