کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4969858 1449984 2017 31 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine learning on high dimensional shape data from subcortical brain surfaces: A comparison of feature selection and classification methods
ترجمه فارسی عنوان
یادگیری ماشین در داده های داده های با ابعاد بزرگ از سطوح مغناطیسی زیرکوریتی: مقایسه انتخاب ویژگی ها و روش های طبقه بندی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
High-dimensional shape descriptors (HDSD) are useful for modeling subcortical brain surface morphometry. Though HDSD is a useful basis for disease biomarkers, its high dimensionality requires careful treatment in its application to machine learning to mitigate the curse of dimensionality. We explored the use of HDSD feature sets by comparing the performance of two feature selection approaches, Regularized Random Forest (RRF) and LASSO, to no feature selection (NFS). Each feature set was applied to three classifiers: Random Forest (RF), Support Vector Machines (SVM) and Naïve Bayes (NB). Paired feature-selection-classifier approaches were 10-fold cross-validated on two diagnostic contrasts: Alzheimer's disease and mild cognitive impairment, both relative to controls across varying sample sizes to evaluate their robustness. LASSO aided classification efficiency, however, RRF and NFS afforded more robust performances. Performance varied considerably by classifier with RF being most stable. We advise careful consideration of performance-efficiency tradeoffs in choosing feature selection strategies for HDSD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 63, March 2017, Pages 731-739
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت