کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969885 1449979 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards complex activity recognition using a Bayesian network-based probabilistic generative framework
ترجمه فارسی عنوان
به رسمیت شناختن فعالیت های پیچیده با استفاده از چارچوب ژنتیکی احتمالی مبتنی بر شبکه بیزی
کلمات کلیدی
به رسمیت شناختن فعالیت شبکه بیزی، فعالیت پیچیده، مدل مولد احتمالاتی، رابطه موقتی، عدم قطعیت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Complex activity recognition is challenging since a complex activity can be performed in different ways, with each having its own configuration of primitive events and their temporal dependencies. To address such temporal relational variabilities in complex activity recognition, we propose a Bayesian network-based probabilistic generative framework that employs Allen's interval relation network to represent local temporal dependencies in a generative way. By employing the Chinese restaurant process and introducing relation generation constraints, our framework can characterize these unique internal configurations of a particular complex activity as a joint distribution. Three concrete models are implemented based on our framework. Specifically, in this paper we improve two of our previous models and provide an enhanced model to handle temporal relational variabilities in complex activities more efficiently. Empirical evaluations on three benchmark datasets demonstrate the competitiveness of our framework. In particular, it is shown that our models are rather robust against errors caused by the low-level predictions from raw signals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 68, August 2017, Pages 295-309
نویسندگان
, , , , ,