کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970295 | 1450032 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Two-Dimensional Discriminant Locality Preserving Projection Based on â1-norm Maximization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a new linear dimensionality reduction method named Two-Dimensional Discriminant Locality Preserving Projection Based on â1-norm Maximization (2DDLPP-L1) is proposed for preprocessing of image data. 2DDLPP-L1 makes full use of the robustness of â1-norm to noises and outliers. Furthermore, 2DDLPP-L1 is a 2D-based method which extracts image features directly from image matrices, avoiding instability and high complexity of matrix computation. Two graphs, separation graph and cohesiveness graph, are constructed with feature vectors as vertices to represent the inter-class separation and intra-class cohesiveness. An iterative algorithm with proof of convergence is proposed to solve the optimal projection matrix. Experiments on several face image databases demonstrate that the performance and robustness of 2DDLPP-L1 are better than its related methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 87, 1 February 2017, Pages 147-154
Journal: Pattern Recognition Letters - Volume 87, 1 February 2017, Pages 147-154
نویسندگان
Si-Bao Chen, Jing Wang, Cai-Yin Liu, Bin Luo,