کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4971403 | 1450525 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep neural networks-based rolling bearing fault diagnosis
ترجمه فارسی عنوان
تشخیص خطای غلتک عمیق شبکه های عصبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سخت افزارها و معماری
چکیده انگلیسی
Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders) are employed to identify the fault condition of rolling bearing. Four preprocessing schemes including feature of time domain, frequency domain and time-frequency domain are discussed. One data set with seven fault patterns is collected to evaluate the performance of deep learning models for rolling bearing fault diagnosis, which is based on the health condition of a rotating mechanical system. The results proved that the accuracy achieved by Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders are highly reliable and applicable in fault diagnosis of rolling bearing.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronics Reliability - Volume 75, August 2017, Pages 327-333
Journal: Microelectronics Reliability - Volume 75, August 2017, Pages 327-333
نویسندگان
Zhiqiang Chen, Shengcai Deng, Xudong Chen, Chuan Li, René-Vinicio Sanchez, Huafeng Qin,