کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
497198 | 862878 | 2010 | 11 صفحه PDF | دانلود رایگان |

This paper presents a new approach for power quality time series data mining using S-transform based fuzzy expert system (FES). Initially the power signal time series disturbance data are pre-processed through an advanced signal processing tool such as S-transform and various statistical features are extracted, which are used as inputs to the fuzzy expert system for power quality event detection. The proposed expert system uses a data mining approach for assigning a certainty factor for each classification rule, thereby providing robustness to the rule in the presence of noise. Further to provide a very high degree of accuracy in pattern classification, both the Gaussian and trapezoidal membership functions of the concerned fuzzy sets are optimized using a fuzzy logic based adaptive particle swarm optimization (PSO) technique. The proposed hybrid PSO-fuzzy expert system (PSOFES) provides accurate classification rates even under noisy conditions compared to the existing techniques, which show the efficacy and robustness of the proposed algorithm for power quality time series data mining.
Journal: Applied Soft Computing - Volume 10, Issue 3, June 2010, Pages 945–955