کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4972863 | 1451246 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Markov random field integrating spectral dissimilarity and class co-occurrence dependency for remote sensing image classification optimization
ترجمه فارسی عنوان
یک فیلد تصادفی مارکوف یکپارچگی طیفی و وابستگی همزمان کلاس را برای بهینه سازی طبقه بندی تصویر سنجش از دور در نظر می گیرند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
چکیده انگلیسی
This paper develops a novel Markov Random Field (MRF) model for edge-preserving spatial regularization of classification maps. MRF methods based on the uniform smoothness lead to oversmoothed solutions. In contrast, MRF methods which take care of local spectral or gradient discontinuities, lead to unexpected object particles around boundaries. To solve these key problems, our developed MRF method first establishes a spatial energy function integrating local spectral dissimilarity to smooth the initial classification map while preserving object boundaries. Second, a new anisotropic spatial energy function integrating the class co-occurrence dependency is constructed to regularize pixels around object boundaries. The effectiveness of the method is tested using a series of remote sensing data sets. The obtained results indicate that the method can avoid oversmoothing and significantly improve the classification accuracy with regards to traditional MRF classification models and some other state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 128, June 2017, Pages 223-239
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 128, June 2017, Pages 223-239
نویسندگان
Leiguang Wang, Xin Huang, Chen Zheng, Yun Zhang,