کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4974045 1365517 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stop and Go adaptive strategy for synchronization of delayed memristive recurrent neural networks with unknown synaptic weights
ترجمه فارسی عنوان
توقف و رفتن استراتژی انطباق برای هماهنگ سازی شبکه های عصبی مکرر با تأخیر با وزن ناشناخته سیناپسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Although the drive-response synchronization problem of memristive recurrent neural networks (MRNNs) has been widely investigated, all the existing results are based on the assumption that the parameters of the drive system are known in prior, which are difficult to implement in real-life applications. In the present paper, a Stop and Go adaptive strategy is proposed to investigate the synchronization control of chaotic delayed MRNNs with unknown memristive synaptic weights. Firstly, by defining a series of measurable logical switching signals, a switched response system is constructed. Subsequently, by utilizing the logical switching signals, several suitable parameter update laws are proposed, then some different adaptive controllers are devised to guarantee the synchronization of unknown MRNNs. Since the parameter update laws are weighted by the logical switching signals, they will work or stop automatically with the switch of the unknown weights of drive system. Finally, two numerical examples with their computer simulations are provided to illustrate the effectiveness of the proposed adaptive synchronization schemes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 354, Issue 12, August 2017, Pages 4989-5010
نویسندگان
, , , ,